
BlackLemon: Snake-eye Resistance with Short
Secrets

rat4
https://blacknet.ninja

February 10, 2025

Abstract

Snake-eye resistance is a recently proposed property of public key
encryption that arises in advanced protocols such as oblivious message
retrieval. In a nutshell, it is connected to the already established
notion of robustness. We discuss a generic approach to augment a
suitable PKE with snake-eye resistance.

1

https://blacknet.ninja


1 Introduction

How a lightweight cryptocurrency wallet could retain privacy? Private in-
formation retrieval, introduced in 1990s, answers a half of the question: if
transaction identifiers are already known, PIR can be used. An answer to
the other half was recently formalised as oblivious message detection[1]. It
is a protocol that employs homomorphic encryption to encrypt a secret key
and perform decryption over this homomorphism. Because the secret key
and the result of decryption stay in encrypted form, the privacy is preserved.
The interplay of two encryptions might be better shown step by step. Alice
encrypts a transaction with Bob’s public key and broadcasts it. Bob encrypts
his secret key with homomorphic encryption and gives it to Carol. Carol tries
to decrypt all transactions with Bob’s key and replies with a compact digest.
Bob decrypts the digest that contains his transactions.

Questions of practicality followed the theoretical framework. A line of
research[2][3][4][5] (some others are left out of scope) had improved perfor-
mance, however the most efficient schemes were shown to be vulnerable to a
snake-eye attack.

2 Preliminary

2.1 Notation

Let δ a probability of successful attack, A an output of adversary. Probabil-
ity distributions U , χkey, χerr are uniform, sparse ternary, discrete Gaussian.
Denote Z/qZ as Zq, and a power-of-two cyclotomic ring Zq[X]/(Xn + 1) as
Rq. If number of dimensions κ ≤ ℓ ≤ n equals n, reinterpret Zn

q as Rq.
Short and long refer to the infinity norm. Shorthands sk, pk, ct, pt, m are
for secret key, public key, ciphertext, plaintext, message.

2.2 Ring-LWE

We will use the non-dual form of Ring-LWE.[6]
Ring-LWE Sample is a pair of form: (a, b = a∗ s+ e) ∈ Rq×Rq where

a← U , s← χkey, e← χerr.
Decision Ring-LWE problem is to distinguish between Ring-LWE sam-

ples and uniformly random samples.
Search Ring-LWE problem is to recover s from Ring-LWE samples.

2



3 Snake-Eye Attack

In snake-eye attack[1], the goal of adversary is to output ciphertexts that
are likely to decrypt to the same plaintext for independent and honestly
generated secret keys. Formally,

Pr
[
sk1 ← keygen(), sk2 ← keygen(),

∀ct ∈ A : decrypt(sk1, ct) = decrypt(sk2, ct) ̸=⊥
]
≤ δ

(1)

3.1 LWE

Typically, LWE decryption procedure looks like[7]:

decode(b− a ∗ s) (2)

Where s is a secret key, and ciphertext comprises a and b. Decoding is done
via Babai round-off procedure.

By setting a = 0 the adversary can make the result of decryption in-
dependent of secret key. In [4] it was shown that exclusion of such trivial
ciphertexts is insufficient in the general case, where short secrets can be pre-
ferred for efficiency.

3.2 NTRU

In modernised variants of NTRU[8] decryption procedure looks like:

decode(c ∗ f)

Where f is a secret key, and ciphertext comprises c. Decoding is done via
reduction modulo a small integer p.

The situation with snake-eyes is roughly similar to LWE. Whilst our idea
is ought to be equally applicable to NTRU, it hasn’t been formally checked.

4 Related Work

As originally noted in [1], it is possible to apply a zero-knowledge proof to
the problem. In more detail, this method requires a proof that public key
was properly generated, because ct ≈ χerr is a snake-eye. LaBRADOR[9] is
among compactest proofs, yet the size is on the order of 50 KiB (even without

3



zero-knowledge property). This is a bit too much to show a cryptocurrency
address as a text or barcode.

As discussed in [4], LWE with uniform secrets can be snake-eye resistant.
Consequently, the authors proposed LWEmongrass that is a LWE-based en-
cryption with hybrid secret distribution, wherein only a few secret elements
are uniform for snake-eye resistance and mostly are short for efficiency. We
note that in principle Ring-LWE with uniform secrets should be snake-eye
resistant likewise unstructured LWE, albeit it would carry on the same effi-
ciency issue of long decoding range (owing to the regularity lemma[7]).

5 BlackLemon

We start with observation that Ring-LWE doesn’t seem to be directly com-
patible with hybrid secret distribution due to the (nega)cyclic structure (also
see Remark 5.5 in [4]). A next question could be whether Module-LWE is
appropriate, since it partially destructures Ring-LWE.

Instead, we consider an indirect approach, and then apply it to sRLWE[3].
The cheapest operation over homomorphic encryption is addition. With this
in mind, return to equation 2 and notice that summing a ciphertext and
a uniformly random value could ”repel snakes”. To suit equation 1, it is
sufficient to be sampled once along secret key. Intuitively, this should not
interfere with basic security of encryption. Being a non-blackbox transforma-
tion, it requires examination on a case-by-case basis, and in fact we spotted
a hurdle with one of advanced properties (see linkability).

5.1 Augmented sRLWE

• SecretKeyGen sample a← χkey, b⃗← U and return sk = (a, b⃗) ∈ Rq×Zκ
q

• PublicKeyGen(sk) sample a← U , e← χerr and compute

pk = (a, b = a ∗ sk.a+ e, c⃗ = sk.⃗b) ∈ Rq ×Rq × Zκ
q (3)

• Encrypt(pk, m⃗) sample u← χkey, e1 ← χerr, e2 ← χerr,

let
[
p⃗t[i] =

⌊
q
2
m⃗[i]

⌉]ℓ
i=1
∈ Zℓ

q

and compute

ct = (a = pk.a ∗ u+ e1, b⃗ = pk.b ∗ u+ pk.⃗c+ p⃗t+ e2) ∈ Rq × Zℓ
q (4)

4



• Decrypt(sk, ct) compute

d⃗ = ct.⃗b− ct.a ∗ sk.a− sk.⃗b ∈ Zℓ
q (5)

check

∀i ∈ [ℓ] : d⃗[i] ∈ [−r; r] ∨
⌊
2

q
− d⃗[i]

⌉
∈ [−r; r] (6)

round off [
m⃗[i] =

⌊
2

q
d⃗[i]

⌉]ℓ
i=1

∈ Zℓ
2 (7)

5.2 Properties

• Correcntness and completeness follow from sRLWE.
By rearranging equation 4, we get:

ct = (a = pk.a ∗ u+ e1︸ ︷︷ ︸
sRLWE.ct.a

, b = pk.b ∗ u+ pt+ e2︸ ︷︷ ︸
sRLWE.ct.b

+pk.c)

That is an invertible operation over sRLWE ciphertext.

• IND-CPA and IK-CPA security relies on Ring-LWE assumption.
Rearrange equation 4 to get:

ct = (a = pk.a ∗ u+ e1︸ ︷︷ ︸
Ring−LWE

, b = pk.b ∗ u+ e2︸ ︷︷ ︸
Ring−LWE

+pk.c+ pt)

Both, decision Ring-LWE and search Ring-LWE problems are required
to be hard.

• Snake-eye resistance is provided.
Examine equation 5:

d = ct.b− ct.a︸ ︷︷ ︸
A

∗sk.a− sk.b

Recall that by definition we require a honestly generated sk.b← U(Zκ
q ),

and Zκ
q is a cyclic group. Counting in equations 6 and 7, for any

adversary:

δ =

(
2r + 1

q

)κ

5



• Regeneration of public keys is linkable.
To begin with, LWE public keys are regenerable, meaning that multiple
public keys may correspond to a single secret key. These additional
public keys are unlinkable to each other, even if correspond to the
same secret.

The ”repellent value” added by us conflicts with unlinkability. It has
to contain some entropy to provide snake-eye resistance, and the same
entropy is a source of linkability.

For use in practice, we can consider a compromise. Full node wallets
essentially don’t need snake-eye resistance and hence could fix the new
value to zero to get the original encryption with regenerable keys.

6 Evaluation

We augmented SophOMR[5] proof of concept for evaluation. The free soft-
ware is available online:

https://github.com/blacknet-ninja/blacklemon-poc

Detection time increased insignificantly at the cost of detection key size.

Table 1: Breakdown of detection key
Component Switch Rotation Multiplication sRLWE BlackLemon Total
Size 4 MiB 136 MiB 58 MiB 19 MiB 19 MiB 236 MiB

Table 2: Comparison of public-key encryption
Scheme sRLWE[3] sRLWE + BlackLemon LWEmongrass[4] sRLWE + LaBRADOR[9]
Snake-eye resistance x ✓ ✓ ✓
Regenerable pk ✓ x ✓ ✓
Ciphertext 2.01 KiB 2.01 KiB 1.84 KiB 2.01 KiB
Compressed pk 2.04 KiB 2.04 KiB 4.49 KiB ≈ 52 KiB
Public key 4.01 KiB 4.01 KiB 1.37 MiB ≈ 54 KiB
Secret key 2.01 KiB 2.01 KiB 5.49 KiB 2.01 KiB

6

https://github.com/blacknet-ninja/blacklemon-poc


References

[1] Zeyu Liu and Eran Tromer. Oblivious Message Retrieval, 2021.

[2] Zeyu Liu, Eran Tromer, and Yunhao Wang. Group Oblivious Message
Retrieval, 2023.

[3] Zeyu Liu, Eran Tromer, and Yunhao Wang. PerfOMR: Oblivious Message
Retrieval with Reduced Communication and Computation, 2024.

[4] Zeyu Liu, Katerina Sotiraki, Eran Tromer, and Yunhao Wang. Snake-
eye Resistance from LWE for Oblivious Message Retrieval and Robust
Encryption, 2024.

[5] Keewoo Lee and Yongdong Yeo. SophOMR: Improved Oblivious Message
Retrieval from SIMD-Aware Homomorphic Compression, 2024.

[6] Chris Peikert. How (Not) to Instantiate Ring-LWE, 2016.

[7] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A Toolkit for
Ring-LWE Cryptography, 2013.

[8] Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. NTRU: A Ring-
Based Public Key Cryptosystem, 1998.

[9] Ward Beullens and Gregor Seiler. LaBRADOR: Compact Proofs for
R1CS from Module-SIS, 2022.

7


	Introduction
	Preliminary
	Notation
	Ring-LWE

	Snake-Eye Attack
	LWE
	NTRU

	Related Work
	BlackLemon
	Augmented sRLWE
	Properties

	Evaluation

